

Hybrid Heat Pumps

Midwest Energy Solutions Conference February 1, 2022

Ryan Kerr

Senior Manager, Emerging Technologies rkerr@gti.energy 847-768-0941

Decarbonizing Buildings

Two Branches for Decarbonization Pathways

More than half of homes & businesses have fuel-fired heating. Broad decarbonization pathways are:

Primarily Fuel-fired Pathway

Mostly Applicable to

Existing Buildings

Cold/Very-cold Climate Regions

Thermally Intensive Loads

Regions Rich With Decarb. Fuels

Technology Needs

Gas Energy Efficiency V

Thermally-driven Heat Pumps

Micro-CHP / Fuel Cells

Hydrogen-fueled Equipment

Decarb. pathways differ by **age**, size, and location:

- 80% of US homes were built **before 2000***
- Average lifespan of US home is 130 years**

Primarily Electric Pathway

Mostly Applicable to

New Construction

Mild/Hot Climates

Low Energy/Net-zero Design

Renewable Electricity-Rich Regions

Technology Needs

Grid-interactive Controls

Dist. Energy Resources

Hybrid Equipment/Systems

BTM Energy Storage

Decarbonize now with Dual-Fuel Hybrid HVAC

Example ASHP paired with Low-capacity furnace = 15,000 BTU modulating to 6,000 BTU

What might be the rationale for hybrid heat pumps?

Society

- Reduce CO₂ emissions cost-effectively
- Utilizes existing infrastructure

Utility

- Strategic Electrification
- Adding winter load with a safety net
- Opportunity to develop non-wires solutions

Customer

- Leverage best attributes of two heating technologies
- Ready retrofit (AC replacement)
- Opportunity to control for different objectives (cost, efficiency, emissions)

Partial List of Residential Hybrid HVACs

System Name	Heat Pump Brand / Part # / Manual	Furnace Brand / Part # / Manual	Thermostat Brand / Part # / Manual	Operating Strategy
Dettson	Dettson COND-**-01	Dettson C**-M-V	Dettson R02P032	Outdoor air temp
Carrier	Carrier 25VNA4	Carrier 59MN7	Carrier SYSTXCCITC	Cost
Rheem	Rheem RP20	Rheem R98V	Rheem RETST700SYS	Outdoor air temp
York	York YZV24	York YP9C	York Hx3	Outdoor air temp
Goodman	Goodman GVZC20	Goodman GMVM97	Goodman CTK04	Outdoor air temp
Amana	Amana AVZC20	Amana AMVM97	Amana CTK04	Outdoor air temp
Venstar – Goodman	Goodman GSZC18	Goodman GMES96	Venstar T7850	Outdoor air temp
Amazon – Goodman	Goodman GSZC18	Goodman GMES96	Amazon Ecobee	Outdoor air temp
Google – Goodman	Goodman GSZC18	Goodman GMES96	Google Nest	Outdoor air temp
Honeywell – Goodman	Goodman GSZC18	Goodman GMES96	Honeywell VisionPRO 8000	Outdoor air temp
Many More				
Many More				

Some commercial Hybrid HVACs emerging too...

Application	Brand	Part #	Ratings	Capacities
Light-commercial	Carrier	48VR	SEER 15.5 HSPF 8.5 AFUE 80	2 – 5 ton 40 – 130 MBH
	Trane (American Standard)	XL16c (4DCZ60)	SEER 16 HSPF 9 AFUE 80	2 – 5 ton 75 – 120 MBH
	Goodman (Amana)	GPD (APD)	SEER 14.5 HSPF 8 AFUE 80	2 – 5 ton 60 – 140 MBH
Commercial	Trane	RT-PRC087	SEER 15 HSPF 9 AFUE 80	3 – 10 ton 48 – 200 MBH
	Allied Commercial	KDB	SEER 15 HSPF 9 AFUE 80	7.5 – 10 ton 13 – 240 MBH

Peak Energy Comparison

Illinois Monthly Residential Energy Use

Winter Heating from 0°F to 70°F

...is like...

Summer Cooling from 145°F to 75°F

7

Residential Hybrid (Dual-fuel) Space Heating

Air Source Heat Pump (ASHP) Performance

Capacities

Efficiencies

Hybrid Controls – Capacity Balance Point

Hybrid Controls – Efficiency Cutoffs

Hybrid Controls – Cost Cutoffs

Smart(er) Hybrid HVAC Control

gti

Current GTI Hybrid R&D

Current and Prior work:

- Deep Energy Retrofits with Hybrids (2019): In IL, seven affordable housing units received envelope and mechanical retrofits with hybrid systems. Field monitoring showed unanticipated large electric use from heat pump units and associated high utility bills.
- Low-Capacity Hybrid HVAC (2021): In NY, five-site demo supplemented with GTI virtual test home approach yielded knowledge on how hybrids perform in three very different electric grid subregions with different operating cost drivers and GHG impacts.
- Smart Fuel-Switching Controller Lab Evaluation for Nicor Gas: Just getting underway, this lab project will evaluate BKR Energy system and build out US capabilities for cost or GHG-driven control strategies.

What are Your Hybrid Research Needs?

- Market landscape assessment
- Manufacturer Engagement
- Developing Methods of Test
- Laboratory evaluation of controls (VTH)
- Field demonstration of controls
- Design and Operating Guidelines
- Proving grid responsiveness (DR)
- Integrating grid backup
- Sharing results and details of hybrid pilots

