# Energy Audits Michigan Farm Energy Program



# MICHIGAN STATE UNIVERSITY

- Agricultural operations significant energy usages
  - Opportunity to reduce costs
  - Utility rates increasing 1% per year or more
    - o 2009 \$0.09/kWh
    - 2021 \$0.15/kWh

# Farm Energy Program

- Created within MSU Biosystems & Engineering Department
  - Truman Surbrook, PhD
  - Aluel Go, Outreach Specialist
  - Developed training & certification program
    - MSU Certified Energy Auditor, 2009
      - Dan Schrauben, PE
      - Schrauben Associates, LLC

# MI Farm Energy Program

- Michigan only State with Certified EA training
- Tier 2 EA per ASABE/ANSI S16 Standard
- Recognized by USDA, State, & utility programs
- MI FEP protocols adopted as part of USDA national guidelines
- Secured funding for energy auditor compensation

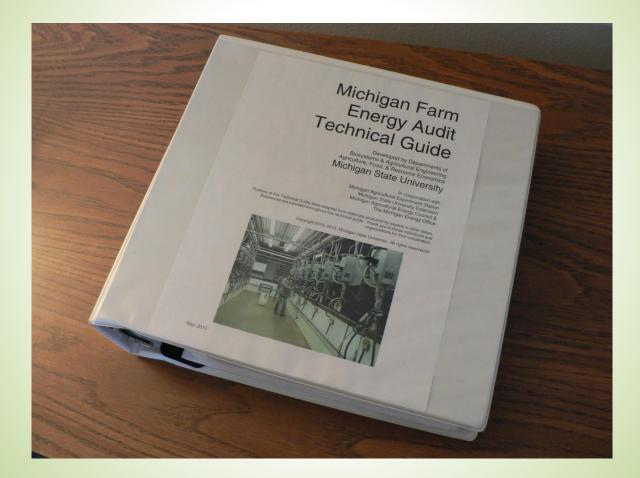
# **Utility Program Participation**

- Utilities had energy efficiency program for Residential, Commercial, & Industrial
- Convinced & assisted utilities to develop agricultural component into EE programs
- Utilities incorporated over 40 agricultural-related measures
- Utilities provided farm energy audit rebate
- Pushed for utilities to reduce cost burden for utility extensions

# Michigan Farm Energy Program

- Initially training for Dairy & Greenhouses
- Followed by Irrigation & Grain Drying
- Methodology applicable to variety of entities
- Including poultry, swine, sheep, beef, equine, popcorn, flower bulbs, organic farms, potatoes, beans, fish hatcheries, blueberries, maple syrup, apiary, & Rural Businesses

## **Rural Businesses**


- Rural Business population < 50,000 (per USDA REAP requirement), some exceptions
- Manufacturing rubber & plastic products, automotive products, injection molding
- Food Processing fruits, meats, vegetables, hard cider, wine, cheese
- Retail farm markets, hardware, discount store, resort, lumber, movie theatre, aerial spraying, bulk farm supplies, car wash, & others

# **MI Farm Energy Program Training**

### Phase I – 3 days of presentations

- MSU staff
- MSU Extension staff
- Industry representatives
- Technical manuals
- Phase II On site visit to a facility
  - Obtain data for a group energy audit
  - Prepare group energy audit
- Phase III Present EA, critique, finalize & deliver
- Phase IV Independently perform energy audit
- Certification upon completion of all 4 phases

### **Technical Guide**



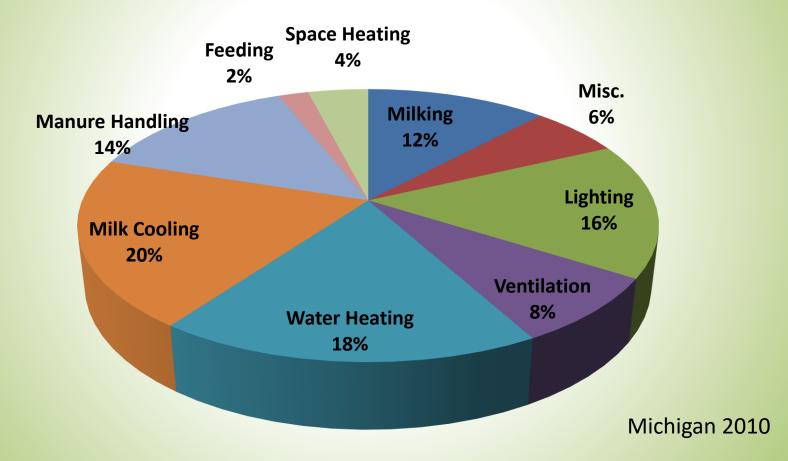
United States Dept. of Agriculture Rural Energy for America Program

- Prior MI FEP, Michigan ranked 46<sup>th</sup> for REAP funding among United States
- Energy auditors incorporated technical data into applications & assisted with forms
- Ranking rose to 5<sup>th</sup> by 2012
- Top 10 ranking maintained to date

### **Dairy Farms**

- "All put milk into the tank"
- Operations & systems vary
  - Be observant
- Take photos (lots) with permission
  - Listen

Dairy Farms Variety of Operations


- Large operations >1,000 head
- Smaller operations <50 head</li>
  - Fully focused on dairy
  - Crop farming with dairy
- Multi-generational operations

### Dairy Farms Variety of Facilities





## **Dairy Energy Usages**



### **Dairy - Challenges & Opportunities**

- Numerous energy components
- Ranges of equipment
- Facility variations
- Facility layouts
- Parlor configurations
  - Parallel
  - Herringbone
  - Carousel (Rotary)

- Lighting
- Cooling
- Pre-heating
- Water heating
- Variable frequency drives
- Ventilation

# **Energy Audit List**

- 1. Three-years of utility bills
- 2. Monthly milk production records
- **3.** Building, labels, and dimensions.
- 4. Milking parlor & milking times
- 5. Milk tank & size
- 6. Feed cost/cow/day.
- 7. Diesel/gas usage
- 8. Plate cooler information
- 9. Vacuum pump horsepower
- 10. Condensing units
- 11. Milk receiver pump
- 12. Water usage /day
- 13. Watering tanks & heaters

- 14. Hot water heater & storage
- 15. Preheater
- 16. Pumps/compressors
- 17. Other motors & uses
- 18. Manure lagoon, gallons
- 19. PTO operations
- 20. Block heaters
- 21. Ventilation fans
- 22. Space heaters
- 23. Lighting & lighting levels
- 24. Exterior lighting, type

### **Energy Audit Reports**

- Summary & conclusions
- Existing & proposed conditions
- Production records & utilities
- Twenty sections 20 to 50 pages
- Data & calculations 20 to 40 tables
- Figures & photos 15 to 20

# **Energy Audit Report**

- A. Dairy Farm Energy Audit
- **B. Energy Conservation Measures**

#### **Summary**

- C. Potential Emission Reductions
- D. Dairy Farm Description
- E. Milk Production
- F. Livestock Management
- G. Electricity & Fuels
- H. Fuel Types & Energy Generation
- I. Water Usage
- J. Variable Speed Drives

- K. Milk Cooling
- L. Water Heating
- M. Washing
- N. Manure Handling
- O. Ventilation Fans
- P. Lighting
- Q. Occupancy Sensors
- R. Shop Heating
- S. Potential Funding Sources
- T. Acknowledgement

#### Energy Conservation Measures Summary (Dairy, 1,400 milking)

| Electricity Energy                        |                  | Cost to        | Doubook      |                    |         |
|-------------------------------------------|------------------|----------------|--------------|--------------------|---------|
| Source                                    | Energy (kWh)     | Energy (MMBtu) | Replace      | Payback<br>(Years) |         |
| Lighting                                  | 124,606          | 425.2          | \$17,694     | \$45,502           | 2.6     |
| Occupancy Sensors                         | 30,358           | 103.6          | \$4,311      | \$4,350            | 1.0     |
| Vending Machines                          | 4,205            | 14.3           | \$597        | \$200              | 0.3     |
| New Slurry Pumps                          | 684,093          | 2,334.1        | \$96,947     | \$164,901          | 1.7     |
| Parlor Vacuum Pumps<br>VFD                | 98,856           | 337.3          | \$13,840     | \$6,699            | 0.5     |
| Special Needs Vacuum<br>Pumps VFD         | 3,684            | 12.6           | \$523        | \$5 <i>,</i> 586   | 10.7    |
| Calf Barn & Old Milk<br>Hse Water Heaters | 66,334           | 226.3          | \$4,660      | \$4,500            | 1.0     |
| Liquid Propane Energy                     |                  | Cost to        | Payback      |                    |         |
| Source                                    | Energy (Gallons) | Energy (MMBtu) | Revenue (\$) | Replace            | (Years) |
| New Pre-Heaters                           | 2,110            | 193.0          | \$4,220      | \$11,441           | 2.7     |
| Parlor Tankless Water<br>Heater           | 505              | 46.2           | \$1,009      | \$4,500            | 4.5     |
| Calf Barn & Old Milk<br>New Water Htrs    | (2,380)          | (217.7)        | (\$4,759)    |                    |         |
| Hot Water Pipe<br>Insulation              | 1,024            | 93.7           | \$2,048      | \$159              | 0.1     |
| Energy Star Washing<br>Machine            | 110              | 10.1           | \$221        | \$900              | 4.1     |
| Totals - Electricity & Liquid Propane     |                  | 3,578.7        | \$141,311    | \$248,739          | 1.8     |

### **Production & Operation Improvements**

- Additional Lighting
  - Improve Lighting Conditions
  - Achieve Recommended Lighting Levels
- Long-day Lighting
  - Milk production Maximized at 16 hours/day lighting
  - Increases feed & lighting costs
  - Increased Milk Production > lighting & feed \$
- Additional Ventilation
  - Heat Stress = 10% to 20% milk production drop
  - Additional Fans & Controls
  - Increased Milk Production > fan & energy \$
- **Proper electric** fence grounding
- Document savings for already installed EE features
- Recommend utility rate analyses

### **Grain Drying**


- Cropping operations, primarily corn
- Soybeans sometimes, may become more typical
- Range of sizes Cropping 500 acres to 25,000 acres
- Grain drying equipment & facilities vary
- Older equipment upgrading to new equipment with more sophisticated control systems

### **Batch Grain Drying**



### Continuous Flow Grain Drying Horizontal - Vertical





### Continuous Flow – Mixed Flow Grain Drying



# Methodology

- Purdue University simulations
- Purdue simulations accepted for REAP funding
- Grain dryer manufacturer simulations
- Now both considered acceptable
- If no simulation (older dryer), then energy auditor makes determination based on data

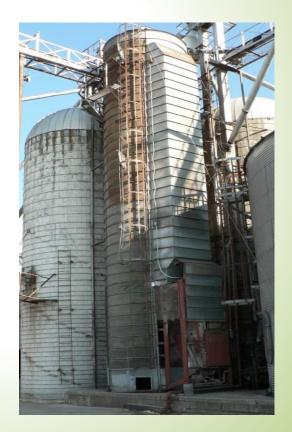
### **Energy Audit Information**

- Inventory facilities dryer(s) & storage
- Loading, unloading, motors, & transfer rates
- Energy usage records 3 years
- Cropping & drying records 3 years
  - Bushels
  - Moisture ranges
- Diesel PTO operations vs electric motors
- Shop energy usages, heating & lighting

#### Existing Facilities – 1,300 Acres Corn, Wheat & Oats



### **Energy Conservation Measures Summary**


| System                     | Energy Savings (MMBtu/Year) |         |           | Savings   | Cost to   | Payback |
|----------------------------|-----------------------------|---------|-----------|-----------|-----------|---------|
|                            | Total                       | Savings | Savings % | (\$/Year) | Implement | (Years) |
| Existing Grain Drying      | 751.0                       |         |           |           |           |         |
| Proposed Grain Drying      | 387.7                       | 363.4   | 48.4%     | \$13,533  | \$113,514 | 8.4     |
| PTO Operation              | 29.0                        |         |           |           |           |         |
| Electric Motor in lieu PTO | 0.4                         | 28.6    | 98.5%     | \$713     | \$657     | 0.9     |
| Grain Drying Subtotal      |                             |         | 50.2%     | \$14,246  | \$114,171 | 8.0     |
| Existing Lighting          | 8.3                         |         |           |           |           |         |
| Proposed Lighting          | 2.1                         | 6.2     | 75.2%     | \$292     | \$1,250   | 4.3     |
| Combined Energy Savings    |                             | 398.1   | 50.5%     | \$14,538  | \$115,421 | 7.9     |

Existing Grain Facilities 7,000 Acres - 600,000 bu. corn Corn, wheat, & soybeans



### Existing Grain Dryers Kan Sun & Meyer Morton Tower Dryers – 1970 Models





### **New GSI Tower Dryer**



#### New Grain Drying Facilities New Location Shop, Equipment & Storage Buildings



### **Grain Drying Energy Audit**

- Cropping 7,000 Acres
- 600,000 bu/yr of corn
- Purdue University simulation
- 40% energy savings
- \$200,000 project
  - Tower grain dryer
  - Installation
- 5.7-year payback

### **Grain Dryer Selection**

- Energy Auditor does not select grain dryer
- Owner determines proposed system
  - Owner review of various brands
  - Others' experiences
  - Long-standing working relationship with a particular supplier

### **Grain Drying Controls**

- Remote monitoring and control
- Touch screen, animated, graphical interface
- Control box installed remotely in a separate control room
- Control multiple augers emptying each cycle for easy start-up
- Adjustable staged starting of fans and heaters
- Grain-temperature sensors for moisture control
- Memory recall for running history & troubleshooting



### **Grain Drying Energy Audit**



- 1990 vintage top dryers
- 140,000 bushels/yr
- Updated controls & electrical panels
- Keep existing grain dryers
- Added generator for 3phase electricity
- ~\$80,000 project
- ~60% energy savings
- <3 years payback</li>

### **Non-Energy Considerations**

- Improved operating conditions
- Improved and more consistent grain quality
- Easier to operate, even operate remotely
- Increased drying capacity
- Allow harvesting operations to proceed in a timely manner

# Greenhouses

- Michigan 3<sup>rd</sup> in the nation for bedding plants
- Celery primary field crop
- Evolved to enclosed operations & bedding plants
- Southwest MI and Western MI numerous greenhouse operations



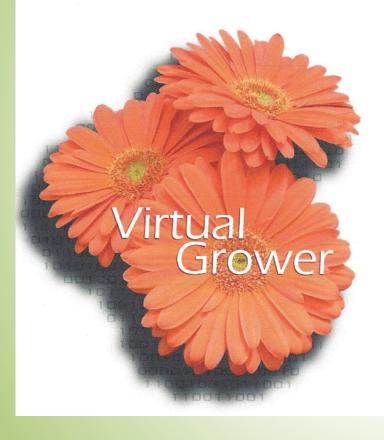
## Greenhouses



### Greenhouse – 10 Acres Bedding Plants – Wholesale Natural Gas - \$250,000/year



Organic Farm – 12 field acres Wind & solar power Greenhouse – 1,200 sf Area Heating to Bench Heating \$13,000 – 0.4-year payback




# **Energy Audit**

- MSU Extension staff
- Greenhouse operators
- MSU technical data
- University publications
- Virtual Grower
  simulation



# **Greenhouse Energy Simulation**



- Computer simulation for greenhouses
- Available from USDA
  website
- Developed by University of Toledo
- Released in 2006
- Updated and upgraded (MSU input)
- Version 3.0

# Virtual Grower

- Planning tool for greenhouse users & growers
- Operating variables impact on heating costs
- Input information existing & proposed
  - Temperature settings
  - Heating days
  - Heating degree days (on-line or VG)
  - Types of heating systems
  - Fuel types
  - Greenhouse shape & construction

### Energy Conservation Measures Summary 6 acres – indoor, 7 acres - outdoor

| Item               | Energy Savings<br>(MMBTU) | Savings<br>(\$/year) | Cost to<br>Implement | Payback<br>(years) |
|--------------------|---------------------------|----------------------|----------------------|--------------------|
| Hi. Eff. Unit Htrs | 2,797.7                   | \$19,530             | \$152,600            | 7.8                |
| Weatherization     | 4,046.3                   | \$28,245             | \$69,751             | 2.5                |
| IR Film Covering   | 1,931.8                   | \$13,485             | \$5,580              | 0.4                |
| Energy Curtains    | 1,000.1                   | \$6,982              | \$62,124             | 8.9                |
| LED Lighting       | 290.1                     | \$10,372             | \$32,407             | 3.1                |
| Water Heaters      | 1.5                       | \$53                 | \$400                | 7.6                |
| Pipe Insulation    | 2.4                       | \$87                 | \$25                 | 0.3                |
| Wtr Htr Blankets   | 8.8                       | \$313                | \$60                 | 0.2                |
| New Refrigerator   | 5.0                       | \$177                | \$450                | 2.5                |
| Vending Miser      | 14.3                      | \$513                | \$400                | 0.8                |
| Occupancy Sensors  | 159.7                     | \$5,709              | \$1,200              | 0.2                |
| Totals             | 10,257.7                  | \$85,466             | \$324,997            | 3.8                |

# Irrigation





# IRRIGATION

- Irrigation Equipment Options
- •Energy Options Fuel Types
  - Diesel
  - Electricity
  - Natural Gas
  - Propane
  - Gasoline
- Electricity & Power Issues 1 phase or 3 phase
- •Phase Converters
- •Variable Frequency Drives
- •Lower pressure sprinklers

#### **Diesel Fuel to Electric Motor**

- Diesel fuel was choice when irrigation systems started being utilized in the 1970's
- Fuel cost was about \$0.70/gallon
- Three-phase electricity was not readily available in rural areas (still the case in many areas)
- Diesel fuel prices increased to approaching \$4/gallon
- Under \$2/gal electricity is more efficient than diesel

#### **Discontinue** Diesel Fuel Usage

- Diesel fuel spillage
  - Withdrawing water from watercourse
  - Wells in low-lying areas
- Diesel fuel theft



### **Electricity Extension**

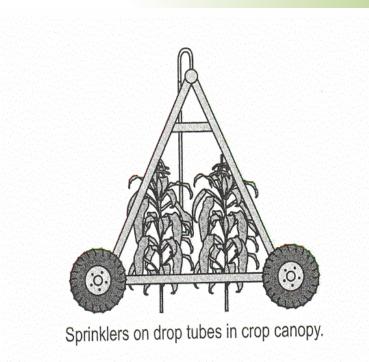
- Construction of power lines cost as much as \$50,000 to \$100,000 per mile
- Even when lines are nearby, the cost of installation is considerable.
- Utility had charged the customer for the full cost of installation
- Extension now based long-term revenue & other customers reducing costs
- One case electricity extension from \$40,000 to \$4,000

## **Irrigation Energy Audit**

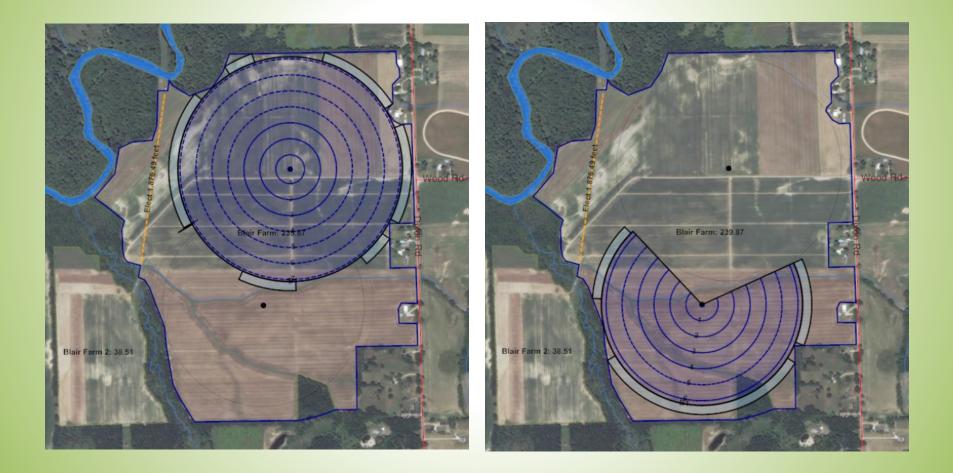
- Five center pivot irrigation systems
- Converted from diesel to electric motors
- Added phase converters on all systems
- Added VFD on three systems
- ~\$80,000 project cost
- 3.3-year payback
- >75% energy savings

### **Data Acquisition**

- Operator provided Irrigation
  Assessment information
- Irrigation flows and fuel usages for each irrigation system
- Cost estimates for proposed improvements
- Plat maps pinpointed system locations
- Location information used to provide aerial maps, elevation data, and USDA soils data




#### **Replace Existing Pump**




### **Proposed Irrigation Upgrade**

- Pressure reduction due to low head sprinklers that replace impact sprinklers.
- Operate the irrigation system at lower pressure, at 45 psi in lieu of 85 psi.
- Install 30 hp electric motor in lieu of existing 100 hp
- \$25,000 project cost
- <2 years payback</li>
- 67% energy savings



#### **Proposed Center Pivot Coverages**



### **Non-Energy Considerations**

- Improved irrigation system operating condition
- Ability to provide irrigation according to system demand
- More uniform water application
- Ease of operation, less labor (elimination of the traveler rig method)
- Reduced runoff, reduced evapotranspiration & reduced erosion potential
- Better management of the water resources.

# **Food Processing**

- Lighting
- Electric Motors
- Cooling Systems
- High Speed Doors

# Lighting – Apple Storage Facility

- Over 200 T8 lighting fixtures installed in 2012, replacing T12 fluorescent
- Installed for energy savings
- Evaluated LED tube lighting in lieu of T8
- \$45,000 estimate in 2013, 5-year payback
- LED prices reduced since 2013
- Eliminates need for enclosures (yellowing) for T8 glass
- Health Dept. considerations
  - Enclosures trapped insects
  - Eliminates potential mercury contamination
- LED longer life reduces hi-bay maintenance

# **Cooling Systems**

- Refrigeration energy control system (ENERSAVE LLC) (MSU alum)
- Installed for 8 million bushels of fruit in MI, NY & Canada
- Savings about 1.5 kWh/bushel/year
- 12,000,000 kWh/year
- Optimizes runtimes of compressors & evaporator fans

## **Energy** Audit

- Energy Saved 48,501 kWh
- Savings \$5,334/yr
- Cost \$16,200
- Payback 3 years



## **Grading & Packing**



- Sophisticated system
- Each apple 16 photos
- Color, color variation, size, weight
- Individualized packing
- Within 2 oz. of listed package weight
- 700,000 bu/year
- 70,000 bu in frost year

### **Automated Hi-Speed Storage Doors**





# High Speed Doors

- Eliminates cooling losses associated with open doors
- Doors open 6 hours/day during loading & unloading
- Opening speeds up to 130" per second help to maintain critical temperatures
- Maximize workflow and reduce product spoilage
- ~\$14,000 to \$20,000/door
- Established as a prescriptive incentive by utility companies, rather than custom

- \$107,000 cost
- 5 doors
- 75% energy savings
- 3.5-year payback
- \$168,000
- 12 doors
- 30% energy savings
- 5-year payback

# **Turkey Farms**



# **Turkey Facilities**

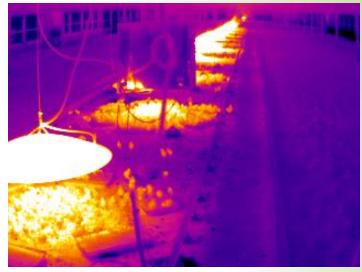


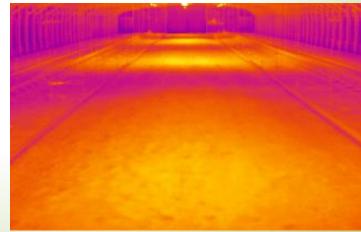
- 1 Brooder Barn
- 4 Finishing Barns
- Rotating flocks
- 30,000 birds/flock
- 6 to 7 flocks/year

# **Energy Items**

- Heating
- Lighting
- Insulation
  - Walls
  - Doors
- Air Circulation
  - Fans
  - Windbreaks




## **Infrared** – Electrical Panels

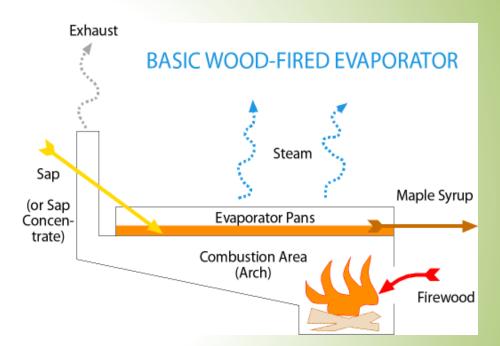





# Methodology

- Inventory Finish Barns identical
- Unit Heaters or Pancake
  Heaters vs Infrared Heaters
- Additional Insulation
  - Walls
  - Doors
- LED Lighting
  - Energy savings
  - Behavioral impact
- Fan Efficiency
- Windbreaks






### **Turkey Farm - Benefits Achieved**

- Budgeted \$2,000,000
- Improvements to 5 facilities
- Energy savings
  - Natural gas
  - Electricity
- Reduced mortality
- Faster weight gain
- Labor savings

## **Maple Syrup Production**

- Reverse Osmosis Filters
  - Reduce sap water content 50% to 75%
  - 40 gal of sap to produce 1 gallon syrup
  - Filtering 10 gal to 1 gal
- Vacuum Assist Collection
  - 30-day season
  - Double sap/tree, 500 taps
  - Common collection point, reduced tractor collection
- \$32,000 project, 4.2-year payback, >80% energy savings
- Michigan is ranked 5<sup>th</sup> in syrup production



#### Manufacturing Plant – Boiler Replacement





## **Energy Conservation Measures**

| ltem          | Energy Savings<br>(MMBTU) | Savings (\$/year) | Cost to Implement | Payback (years) |
|---------------|---------------------------|-------------------|-------------------|-----------------|
| Boiler System | 7,309                     | \$106,077         | \$484,013         | 2.2             |
| Steam Piping  | 16,556                    | \$115,895         |                   |                 |
| Unit Heaters  | 4,401                     | \$30,804          | \$38,000          | 1.2             |
| Motors + VFD  | 1,653                     | \$48,454          | \$31,500          | 0.7             |
| Vending       | 52                        | \$1,520           | \$1,600           | 1.1             |
| Totals        | 29,971                    | \$302,750         | \$555,113         | 1.8             |

### Summation

- MI Farm Energy Audit Program is unique
- On-site data acquisition by energy auditor is key
  - Observe operation
  - Obtain first-hand information
  - Provides opportunity to gain insight from owners and operators
    - Issues specific to operations and facilities
    - Goals and potential improvement opportunities
- Training and other resources are important
- Methodology adaptable to any energy using operation or facility
- Innovations and technological advances ongoing



#### Michigan State University Biosystems and Agricultural Engineering