ATMOSZERO A

Industrial scale decarbonization

Ashwin Salvi, Ph.D.

Co-founder Chief Operating Officer Head of Global Business Development

Ashwin@atmoszero.energy

THE PROBLEM OPPORTUNITY

The sweet spot: Steam temperatures

50% of all process heat is delivered by steam.

The power of steam

Steam accounts for:

50%

of process heat used in industry 8%

of global primary energy use

GHG emissions per year

→ Decarbonizing steam has huge global impact

Introduction – Steam Generation

Fuel Boiler

State-of-the-art, requires combusting fuel such as natural gas

Waste Heat Driven Heat Pump

High efficiency, requires site specific engineering for facility integration

Electric Boiler

Commercially available and low-CAPEX, efficiencies <100%

Air-Sourced Heat Pump

Lowered efficiency, reduced integration challenges

Heat Pump System Configurations

Air-Sourced Steam Generating Heat Pump Low-Temperature Waste Heat Sourced (≤45°C) Steam Generating Heat Pump High-Temperature Waste Heat Sourced (≥60°C) Steam Generating Heat Pump

Waste Heat Recovery is Good, Right?

* COP values assume 60% of Carnot COP and a steam delivery temperature of 150°C

* All costs shown are for a 1MW steam capacity installation

* All costs shown are for a 1MW steam capacity installation

* All costs shown are for a 1MW steam capacity installation

* All costs shown are for a 1MW steam capacity installation

Simple Incremental Payback Period

* All costs shown are for a 1MW steam capacity installation

** Revenue lost (upper bound) assumes \$100M per annum facility and 5 days of lost revenue for the installation period. Lower bound assumes no facility downtime.

Industrial Steam Requirements

Modular

Must scale to meet global demand

Drop-in

Must install quickly and deliver instant results

Minimize integration 24-7

Reduce complexity, increase repeatability.

Consistent output for energy security and resilience

A mass-manufacturable and scalable solution enables rapid decarbonization

Case Study: Built Environment – De-steaming Campus

	Air-s	ourced steam	Gro hyd	und-sourced ronic
Energy Cost (\$/MWh for NG and electric, \$/kg for hydrogen)	70		70	
CapEx (\$/MW)	\$	500,000		\$9,750,000- 25,000,000
Energy Efficiency		200%		444%
Annual Energy Costs	\$	102,098	\$	45,969
Annual O&M	\$	11,000	\$	11,000
Total Annual OPEX	\$	113,098	\$	56,969
Amortized Capex	\$	58,730		\$1,145,231 - 2,936,491
Levelized Cost of Steam (\$/MWh)	\$	59		\$412 - 1,026
Simple payback (AZ baseline, yrs)	-		165 - 436	
				1

Payback for de-steam

www.AtmosZero.energy | info@atmoszero.energy

Hidden Costs of Installing Waste Heat Equipment

 Careful consideration must be made based on cost to recover waste heat and the downtime required to install equipment

Category	Cost (\$/kW, 2023 dollars)	Description	
Heat Recovery	650	Heat exchanger hardware for extracting heat, circulation pump, controls, piping	
Labor/Materials	582	Labor costs for civil, mechanical, and electrical work; material costs for ductwork, piping, wiring	
Project and Construction	350	General contractor markup and bonding, performance guarantees	
Engineering and Fees	260	Project engineering and fees	

"Updated Buildings Sector Appliance and Equipment Costs and Efficiencies," June 2018. [Online]. Available: <u>https://www.eia.gov/analysis/studies/buildings/equipcosts/archive/2018/pdf/full.pdf</u>.

K. Darrow, R. Tidball, J. Wang and A. Hampson, "Catalog of CHP Technologies," U.S. Environmental Protection Agency, 2015.

